DeepCut: Joint Subset Partition and Labeling for Multi Person Pose Estimation

Leonid Pishchulin1, Eldar Insafutdinov1, Siyu Tang1, Bjoern Andres1, Mykhaylo Andriluka1,3, Peter Gehler2 and Bernt Schiele1

1Max Planck Institute for Informatics, Saarbrücken, Germany 2Max Planck Institute for Intelligent Systems, Tübingen, Germany 3Stanford University, Stanford, USA

\textbf{Goal}

- Multi-person pose estimation in monocular RGB images

\textbf{State of the Art}

- single person + occl. reasoning [Chen&Yuille, CVPR'15] – no true multi-person reasoning
- two-stage approaches [Eichner&Ferrari, ECCV'10]
 - reliable people detector required
 - feed-forward approach prone to errors

\textbf{Contributions}

- Novel joint formulation
- two-stage approaches [Eichner&Ferrari, ECCV'10]
- single person + occl. reasoning [Chen&Yuille, CVPR'15]

\textbf{DeepCut (contd.)}

III. Integer Linear Program (ILP)

- Substitute $x_{d,c} = x_d x_c + y_d$ to convert objective to ILP
- NP-Hard problem solved via branch-and-cut (1% gap)
- Linear constraints on 0/1 labelings: plausible poses
 - uniqueness
 - consistency
 - transitivity

I. Unary probabilities
- fully-convolutional CNN architecture based on VGG [7]

II. Pairwise probabilities
- Proximity
- Kinematic relations
- Capture part relationships within/across people

\begin{itemize}
 \item \textbf{Single person pose estimation}
 - MPI Multi-Person dataset [1]
 - \textbf{Mean Average Precision (mAP) metric}

\end{itemize}

\begin{itemize}
 \item \textbf{Results}
 \textbf{Multi-person pose estimation}
 - \textbf{MPI Multi-Person dataset [1]}
 - \textbf{Average Precision (mAP) metric}

\end{itemize}

\begin{itemize}
 \item \textbf{Single person pose estimation}
 - \textbf{MPI Multi-Person dataset [1]}

\end{itemize}

\begin{itemize}
 \item \textbf{References}

\end{itemize}